Государственное бюджетное профессиональное образовательное учреждение Псковской области «Опочецкий индустриально-педагогический колледж» Центр цифрового образования детей «IT – куб»

СОГЛАСОВАНО Педагогическим советом Протокол № 07 от 30.08.2025 г.

УТВЕРЖДЕНО приказом исполняющего обязанности директора колледжа И.А. Гайдовской от 01.09.2025 г № 512

Дополнительная общеобразовательная общеразвивающая программа технической направленности

«Программирование роботов (7-9 лет) старт»

Направленность: техническая Уровень программы: стартовый Срок реализации: 1 год (144 часа) Возраст детей: 7-9 лет

Разработчики:

Иванова С.П., зам. директора по учебно-методической работе; Кузнецова В. С., методист

СОДЕРЖАНИЕ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
УЧЕБНЫЙ ПЛАН	12
СОДЕРЖАНИЕ УЧЕБНО-ТЕМАТИЧЕСКОГО ПЛАНА	14
КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ	20
СПИСОК ЛИТЕРАТУРЫ	23
Приложение 1	25
Приложение 2	26

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

1. Нормативно-правовая база разработки и реализации программы.

Программа разработана на основе следующих нормативных документов:

- Федерального закона от 29.12.2012 № 273-ФЗ (ред. от 31.07.2020) «Об образовании в Российской Федерации» (с изм. и доп., вступ. в силу с 01.09.2020);
- Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам, утвержденного приказом Министерства просвещения Российской Федерации от 27.07.2022 г. № 629;
- Постановления Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Постановления Главного государственного санитарного врача Российской Федерации от 28.01.2021 № 2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21 Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»;
- Приказа Минобрнауки России №882, Минпросвещения России №391 от 05.08.2020 «Об организации и осуществлении образовательной деятельности при сетевой форме реализации образовательных программ» (вместе с «Порядком организации и осуществления образовательной деятельности при сетевой форме реализации образовательных программ»);
- Методических рекомендаций по созданию и функционированию центров цифрового образования «ІТ-куб» (письмо Министерства просвещения Российской Федерации от 10 ноября 2021 г. № ТВ-1984/04);
- Стратегии развития воспитания в Российской Федерации на период до 2025 года (Утверждена распоряжением Правительства РФ от 29.05.2015 № 996-р «Об утверждении Стратегии развития воспитания в Российской Федерации на период до 2025 года»);
- Концепции развития дополнительного образования детей до 2030 года,
 утвержденной распоряжением Правительства Российской Федерации от 31 марта
 2022 г. № 678-р.

2. Новизна, актуальность, педагогическая целесообразность программы

Новизна программы. Работа с образовательными конструкторами LEGO позволяет учащимся в форме познавательной игры узнать многие важные идеи и развить необходимые в дальнейшей жизни навыки. При построении модели затрагивается множество проблем из разных областей знания - от теории механики до психологии, - что является вполне естественным. Ценность, новизна программы состоит в том, что в ней уделяется большое внимание практической деятельности учащихся: освоение базовых понятий и представлений об программировании, а также применение полученных знаний физики, информатики и математики в инженерных проектах. Программа основана на принципах развивающего обучения, способствует повышению качества обучения, формированию алгоритмического стиля мышления и усилению мотивации к обучению.

Актуальность программы Современное общество — стремительно развивающаяся система, для ориентирования в которой ребятам приходится обладать постоянно растущим кругом дисциплин и знаний. Данный курс помогает учащимся не только познакомиться с вливающимся в нашу жизнь направлением робототехники, но и интегрироваться в современную систему.

Очень важным представляется тренировка работы в коллективе и развитие самостоятельного технического творчества. Простота в построении модели в сочетании с большими конструктивными возможностями конструктора позволяют учащимся в конце занятия увидеть сделанную своими руками модель, которая выполняет поставленную ими же самими задачу.

Программа разработана для того, чтобы позволить учащимся работать наравне со сверстниками и подготавливает к работе с более взрослыми учащимися. Способствует развитию самосознания учащегося как полноценного и значимого члена общества.

Педагогическая целесообразность программы объясняется формированием высокого интеллекта через мастерство. Целый ряд специальных заданий на наблюдение, сравнение, домысливание, фантазирование служат для достижения этого. Программа направлена на то, чтобы через труд приобщить учащихся к творчеству.

Важно отметить, что компьютер используется как средство управления моделью; его использование направлено на составление управляющих алгоритмов для собранных моделей. Учащиеся получают представление об особенностях составления программ управления, автоматизации механизмов, моделировании работы систем. Также педагогическая целесообразность данной программы заключается в том, что она отвечает потребностям общества и образовательным стандартам в формировании компетентной, творческой личности. Программа носит сбалансированный характер и направлена на развитие информационной культуры обучающихся. Содержание программы определяется с учётом возрастных особенностей обучающихся, широкими возможностями социализации в процессе общения.

Направленность программы: техническая.

3. Адресат программы.

Адресатом программы являются дети в возрасте от 7 до 9 лет.

Содержание и объем стартовых знаний, необходимых для начального этапа освоения программы: умение читать и писать, решать арифметические задачи, иметь базовые навыки пользования ПК.

4. Срок реализации программы:

Срок реализации программы составляет 1 год.

Уровень программы: стартовый.

Программа предполагает использование и реализацию общедоступных и универсальных форм организации материала, минимальную сложность предлагаемого для освоения содержания программы.

5. Форма реализации программы.

Форма обучения – очная.

Образовательные технологии: информационные технологии, проектная технология, здоровьесберегающие технологии, технология проблемного обучения.

Форма организации содержания и процесса педагогической деятельности – комплексная.

Тип организации работы учеников: групповая работа, индивидуальная, коллективная.

Виды занятий: лекции и практические занятия.

Наполняемость группы: от 7 до 9 человек.

6. Объем программы:

Объем программы: 144 часа.

Режим занятий: 2 раза в неделю по 2 академических часа. Продолжительность часа — 40 минут.

7. Цель программы:

Цель - создание условий для развития у кружковцев коммуникативных компетенций посредством расширения социальных связей, создание ситуации успеха в роли члена коллектива и развитие навыков технической деятельности, работы со специализированным оборудованием, подготовка к свободному, осознанному выбору направления будущей профессиональной деятельности.

8. Задачи программы:

Задачи:

Образовательные:

- создать условия для обучения с LEGO-оборудованием и программным обеспечением самостоятельно (в группе); планировать процесс работы с проектом с момента появления идеи или задания и до создания готового продукта;
- содействовать учащимся в умении применять знания и навыки, полученные при изучении других предметов: математики, информатики, технологии; в умение собирать, анализировать и систематизировать информацию;
- дать учащимся навыки оценки проекта и поиска пути его усовершенствования.

Развивающие:

- содействовать учащимся в развитии у учащихся конструкторских, инженерных и вычислительных навыках, в творческом мышлении;
- развить у учащихся умение самостоятельно определять цель, для которой должна быть обработана и передана информация;
- способствовать развитию у учащихся умения исследовать проблемы путём моделирования, измерения, создания и регулирования программ;
- создать условия для развития умения излагать мысли в чёткой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путём логических рассуждений;
- развивать умение работать над проектом в команде, эффективно распределять обязанности.

<u> Воспитательные:</u>

- способствовать формировать мотивацию успеха и достижений, творческой самореализации на основе организации предметно-преобразующей деятельности; формировать внутренний план деятельности на основе поэтапной отработки предметно

преобразовательных действий;

- создать условия для формировать умений искать и преобразовывать необходимую информацию на основе различных информационных технологий (графических текст, рисунок, схема; информационно-коммуникативных);
- содействовать учащимся в воспитании командного духа, команды, где каждый ребёнок умеет сотрудничать со сверстниками и взрослыми;
- сформировать у учащихся адекватное отношение к командной работе, без стремления к соперничеству.

9. Планируемые результаты освоения программы

<u>Знать:</u>

- технику безопасности на компьютере и предъявляемые требования к организации рабочего места;
- принципы создания алгоритмов и их назначение;
- принципы создания объектов и их свойства;
- обладает начальными знаниями и элементарными представлениями о робототехнике, знает компьютерную среду, включающую в себя линейное программирование, создает действующие модели роботов на основе конструктора Lego WeDo 2.0 по разработанной схеме, демонстрирует технические возможности роботов, создает программы на компьютере для различных роботов с помощью педагога и запускает их самостоятельно;
- принципы и способы создания анимации, принципы работы механизмов и их применение, программу как среду программирования, программные средства управления механизмами.

Уметь:

- работать с аппаратными средствами (включать и выключать компьютер и блок управления);
- запускать различные программы на выполнение;
- использовать меню, работать с несколькими окнами;
- работать с файлами и папками (создавать, выделять, копировать, перемещать, переименовывать и удалять); находить файлы и папки; загружать проект в блок управления;
- овладевает роботоконструированием, проявляет инициативу и самостоятельность в

среде программирования Lego WeDo 2.0, общении, познавательно – исследовательской и технической деятельности;

- способен выбирать технические решения, участников команды, малой группы (в пары).

Приобрести личностные результаты:

- обладает установкой положительного отношения к роботоконструированию, к разным видам технического труда, другим людям и самому себе, обладает чувством собственного достоинства;
- активно взаимодействует со сверстниками и взрослыми, участвует в совместном конструировании, техническом творчестве имеет навыки работы с различными источниками информации;
- способен договариваться, учитывать интересы и чувства других, сопереживать неудачам и радоваться успехам других, адекватно проявляет свои чувства, в том числе чувство веры в себя, старается разрешать конфликты;
- обладает развитым воображением, которое реализуется в разных видах исследовательской и творческо-технической деятельности, в строительной игре и конструировании; по разработанной схеме с помощью педагога, запускает программы на компьютере для роботов;
- владеет разными формами и видами творческо-технической игры, знаком с основными компонентами конструктора Lego WeDo 2.0; видами подвижных и неподвижных соединений в конструкторе, основными понятиями, применяемыми в робототехнике, различает условную и реальную ситуации;
- достаточно хорошо владеет устной речью, способен объяснить техническое решение, может использовать речь для выражения своих мыслей, чувств и желаний, построения речевого высказывания в ситуации творческо-технической и исследовательской деятельности;
- способен к волевым усилиям при решении технических задач, может следовать социальным нормам поведения и правилам в техническом соревновании, в отношениях со взрослыми и сверстниками;
- проявляет интерес к исследовательской и творческо-технической деятельности, задает вопросы педагогу и сверстникам, интересуется причинно-следственными связями, пытается самостоятельно придумывать объяснения технические задачи;

склонен наблюдать, экспериментировать;

- способен к принятию собственных творческо-технических решений, опираясь на свои знания и умения, самостоятельно создает авторские модели роботов на основе конструктора Lego WeDo 2.0.

9. Формы представления результатов

Формы аттестации: опрос, демонстрация решения, наблюдение, защита проектов, проверочная работа.

Входной контроль осуществляется в начале реализации программы в форме беседы и наблюдения и имеет диагностические задачи. Цель входной диагностики – зафиксировать начальный уровень подготовки обучающихся, имеющиеся знания, умения и навыки, связанные с предстоящей деятельностью.

Наблюдение осуществляется в течение реализации программы.

Промежуточный контроль осуществляется в целях диагностики теоретических знаний и практических умений и навыков по итогам освоения одного из разделов курса. Проводится в форме демонстрации проекта.

Итоговый контроль проводится с целью определения степени достижения результатов обучения и получения сведений для совершенствования программы и методов обучения — представляет из себя защиту проекта.

10. Оценочные материалы, формирующие систему оценивания

Промежуточное аттестация состоит кейс-задания, которое обучающий должен сделать в рамках определенной темы. Примеры заданий приведены в приложении 1. Максимальный балл за промежуточную аттестацию: 40 баллов.

Оценивание кейс-задания осуществляется по следующим уровням:

- высокий уровень учащийся набрал не менее 80% от максимально возможного количества баллов (от 32 баллов).
- средний уровень учащийся набрал не менее 50% от максимально возможного количества баллов (от 20 баллов).
- низкий уровень учащийся набрал менее 50% от максимально возможного количества баллов (менее 20 баллов).

Итоговый контроль представляет из себя защиту проекта. Проект представляет собой игру, которую обучающийся должен создать самостоятельно, используя полученные знания на курсе.

Критерии оценки проекта

No	Название критерия	Максимальный
		балл
1.	Актуальность и проработанность проблемы	До 5 баллов
2.	Четкость формулировки целей и задач	До 5 баллов

3.	Технологическая сложность проекта:	До 10 баллов
	уровень детализации объектов;	
	использование сложных скриптов;	
	создание собственных спрайтов;	
	добавление эффектов к спрайтам;	
	использование алгоритмических структур.	
4.	Новизна и оригинальность решения	До 5 баллов
5.	Качество разработанного продукта (с учетом специфики направления данный пункт можно уточнить)	До 5 баллов
6.	Защита проекта: качество презентации; четкость и ясность изложения, умение взаимодействовать с аудиторией, отвечать на вопросы.	До 5 баллов
7.	Наличие самооценки и перспектив дальнейшей разработки проекта	До 5 баллов
	Итого	40 баллов

Оценивание проекта осуществляется по следующим уровням:

- ✓ Высокий уровень учащийся набрал не менее 32 баллов по итогам защиты проекта.
- ✓ Средний уровень учащийся набрал от 20 до 31 баллов по итогам защиты проекта.
- ✓ Низкий уровень учащийся набрал менее 20 баллов по итогам защиты проекта.

Оценка итоговых результатов освоения программы осуществляется по трем уровням:

- ✓ Высокий уровень достижение 80 100% показателей освоения программы.
 - ✓ Средний уровень достижение 50 79% показателей

освоения программы.

 ✓ Низкий уровень - достижение менее чем 50% показателей освоения программы.

Достигнутые обучающимся знания, умения и навыки заносятся в сводную таблицу результатов обучения.

Оценка уровней освоения программы

Уровни	Параметры	Показатели	
Высоки	Теоретически	Обучающийся освоил материал в полном объеме.	
й	е знания	Знает и понимает значение терминов, употребляет их	
уровень		осознанно и	
(80-		в полном соответствии с содержанием.	
100%)		Самостоятельно ориентируется в содержании	
		материала по темам.	
	Практические	Обучающийся овладел 80-100% умений и	
	умения и	навыков, предусмотренных программой	
	навыки	за конкретный период.	
		Умет работать самостоятельно, применяя практические	
		умения и навыки.	
		Правильно и по назначению применяет инструменты.	
		Умеет выполнять основные логические действия	
		(анализ, синтез, установление причинно-следственных	
		связей).	
		Способен планировать и регулировать свою	
		деятельность по реализации проекта.	
		Умеет осуществлять поиск информации, в том числе в	
		сети Интернет; выслушивать собеседника и вести	
		диалог; выражать	
		свои мысли в соответствии с задачами и	

ется в
ется за
льную
е всегда
AT
a.
авателя.
ильного
х после
X HOCHC
при
при (анализ,
вязей).
свою
(I (I ()

		деятельность по реализации проекта с помощью педагога. Испытывает незначительные сложности в осуществлении коммуникации с педагогом и сверстниками.
	Личностные результаты	Внутренняя мотивация к обучению сочетается с внешней. В работе допускает небрежность. Работу не всегда выполняет аккуратно и/или доводит до конца. Оценить результаты своей деятельности может с подсказкой педагога.
Низки й уровен ь (мень ше	Теоретически е знания	Владеет минимальными знаниями, ориентируется в содержании материала по темам только с помощью педагога. Избегает употреблять специальные термины.

	Владеет минимальными начальными навыками и		
умения и	умениями.		
навыки	Учащийся способен выполнять каждую операцию		
	только с подсказкой педагога или товарищей.		
	Часто неправильно применяет необходимый		
	инструмент или на использует его вовсе. В работе		
	допускает грубые ошибки, не может их найти их даже		
	после указания преподавателя.		
	В состоянии выполнять лишь простейшие практические		
	задания педагога.		
	Испытывает существенные затруднения при		
	выполнении основных логических действий (анализ,		
	синтез, установление причинно-следственных связей).		
	Не способен планировать и регулировать свою		
	деятельность по реализации проекта.		
	Испытывает значительные сложности в осуществлении		
	коммуникации с педагогом и сверстниками.		
Личностные	Преобладает внешняя мотивация к обучению.		
результаты	Работу часто выполняет неаккуратно и/или не доводит		
	до конца. Не способен самостоятельно и объективно		
	оценить результаты своей работы.		
	Личностные		

Сводная таблица результатов обучения по программе

	Фамилия,	Оценка	Оценка	Личностн	Итогов
№	имя	теоретических	практических	ые	ая
π/	обучающего	знаний	умений и навыков	результат	оценка
П	ся		(предметных и	Ы	
			метапредметн		
			ых)		
1.					

2.			
3.			

УЧЕБНЫЙ ПЛАН

№ п/ п	Тема занятия	Ко лич ест во час ов	Форма контроля
1.	Вводное занятие.	2	Обзор научно- популярной и технической литературы; демонстрация моделей
	1. Инструктаж по технике безопасности. Задачи кружка на новый учебный год. Обсуждение программ и планов. Организационные вопросы. Режим работы группы.	2	
2.	Обзор набора Lego WeDo 2.0	4	Упражнение- соревнование, тестирование
	1. Повторение и закрепление знаний о компонентах конструктора Lego WeDo 2.0. Конструирование по замыслу.	4	
3.	Программное обеспечение Lego WeDo 2.0	4	Смотры, конкурсы, соревнования, выставки по итогам тем
	1. Повторение и закрепление знаний о среде программирования (блоки, палитра, пиктограммы, связь блоков программы с конструктором).	2	

	2. Конструирование по замыслу. Составление программ.	2	
4.	Работа над проектом «Механические конструкции»	50	Викторины, игра- соревнование, защита проектов
	1. Сборка конструкции «Подъемный кран». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
	2. Сборка конструкции «Датчик перемещения «Подъемный кран». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	3. Сборка конструкции «Датчик наклона «Подъемный кран». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	4. Сборка моделей по замыслу с использованием датчиков перемещения и наклона. Создание новых программ для выбранных моделей.	2	
	5. Сборка конструкции «Мельница». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
	6. Сборка конструкции «Датчик перемещения «Мельница». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	7. Сборка конструкции «Датчик наклона «Мельница». Конструирование модели. Измерения, расчеты, программирование модели.	2	
	8. Сборка моделей по замыслу с использованием датчиков перемещения и наклона. Создание новых	2	

программ для выбранных моделей.		
9. Сборка конструкции «Качели». Конструирование		
модели по схеме. Измерения, расчеты,	2	
программирование модели. Решение задач.		
10. Сборка конструкции «Датчик перемещения		
«Качели». Конструирование модели. Измерения,	2	
расчеты, программирование модели. Решение задач.	_	
11. Сборка конструкции «Датчик наклона «Качели».		
Конструирование модели по схеме. Измерения,	2	
	2	
расчеты, программирование модели. Решения задач.		
12. Сборка моделей по замыслу с использованием		
датчиков перемещения и наклона. Создание новых	2	
программ для выбранных моделей.		
13. Сборка конструкции «Веселая карусель».		
Конструирование модели по схеме. Измерения,	2	
расчеты, программирование модели. Решение задач.		
14. Сборка конструкции «Датчик перемещения		
«Веселая карусель». Конструирование модели.	2	
Измерения, расчеты, программирование модели.	2	
Решение задач.		
15. Сборка конструкции «Датчик наклона «Веселая		
карусель». Конструирование модели. Измерения,	2	
расчеты, программирование модели. Решение задач.		
16. Сборка моделей по замыслу с использованием		
датчиков перемещения и наклона. Создание новых	2	
программ для выбранных моделей.		
17. Сборка конструкции «Аттракцион «Колесо		
обозрения». Конструирование модели по схеме.		
Измерения, расчеты, программирование модели.	2	
Решение задач.		
18. Сборка конструкции «Датчик перемещения	2	
то. Соорка конструкции «датчик перемещения	<u> </u>	

	«Аттракцион «Колесо обозрения». Конструирование		
	модели. Измерения, расчеты, программирование		
	модели. Решение задач.		
	19. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	2	
	программ для выбранных моделей.		
	20. Сборка конструкции «Механический молоток».		
	Конструирование модели по схеме. Измерения,	2	
	расчеты, программирование модели. Решение задач.		
	21. Сборка конструкции «Датчик перемещения,		
	датчик наклона «Механический молоток».		
	Конструирование модели. Измерения, расчеты,	2	
	программирование модели. Решение задач.		
Пр	омежуточная аттестация	2	Решение кейса
1	22. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	1	
	программ для выбранных моделей.		
	23. Сборка конструкции «Радар». Конструирование		
	модели по схеме. Измерения, расчеты,	1	
	программирование модели. Решение задач.		
	24. Сборка конструкции «Датчик перемещения и		
	наклона «Радар». Конструирование модели.		
	Измерения, расчеты, программирование модели.	2	
	Решение задач.		
	25. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	2	
	программ для выбранных моделей.		
5.			Викторины,
J.	Работа над проектом «Транспорт»		•
		32	игра-
			соревнования,
			защита проектов

1. Сборка конструкции «Подметально-уборочная машина». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
2. Сборка конструкции «Датчик перемещения «Подметально-уборочная машина». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
3. Сборка конструкции «Датчик наклона «Подметально-уборочная машина». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
4. Соревнование команд. Создание моделей и написание новых программ для них.	2	
5. Сборка конструкции «Снегоочиститель». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
6. Сборка конструкции «Датчик перемещения «Снегоочиститель». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
7. Сборка конструкции «Датчик наклона «Снегоочиститель». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
8. Соревнование команд. Создание моделей и написание новых программ для них.	2	
9. Сборка конструкции «Катер». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
10. Сборка конструкции «Датчик перемещения	2	

	«Катер». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.		
	11. Сборка конструкции «Датчик наклона «Катер». Конструирование модели. Измерения, расчеты, программирование модели.	2	
	12. Соревнование команд. Создание моделей и написание новых программ для них.	2	
	13. Сборка конструкции «Самолет». Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.	2	
	14. Сборка конструкции «Датчик перемещения «Самолет». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	15. Сборка конструкции «Датчик наклона «Самолет». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	16. Соревнование команд. Создание моделей и написание новых программ для них.	2	
6.	Работа над проектом «Мир живой природы»	52	Викторины, игра- соревнования, защита проектов
	1. Сборка конструкции «Пеликан». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	2. Сборка конструкции «Датчик перемещения «Пеликан». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	
	3. Сборка конструкции «Датчик наклона «Пеликан». Конструирование модели. Измерения, расчеты, программирование модели. Решение задач.	2	

	4. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	2	
	программ для выбранных моделей.		
	5. Сборка конструкции «Собака». Конструирование		
	модели по схеме. Измерения, расчеты,	2	
	программирование модели. Решение задач.		
	6. Сборка конструкции «Датчик перемещения		
	«Собака». Конструирование модели. Измерения,	2	
	расчеты, программирование модели. Решение задач.		
	7. Сборка конструкции «Датчик наклона «Собака».		
	Конструирование модели. Измерения, расчеты,	2	
	программирование модели. Решение задач.		
	8. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	2	
	программ для выбранных моделей.		
	9. Сборка конструкции «Лягушка». Конструирование		
	модели по схеме. Измерения, расчеты,	2	
	программирование модели. Решение задач.		
	10. Сборка конструкции «Датчик перемещения		
	«Лягушка». Конструирование модели. Измерения,	2	
	расчеты, программирование модели. Решение задач.		
	11. Сборка конструкции «Датчик наклона		
	«Лягушка». Конструирование модели. Измерения,	2	
	расчеты, программирование модели. Решение задач.		
	12. Сборка моделей по замыслу с использованием		
	датчиков перемещения и наклона. Создание новых	2	
	программ для выбранных моделей.		
	13. Сборка конструкции «Дракон». Конструирование		
	модели оп схеме. Измерения, расчеты,	2	
	программирование модели. Работа по схеме.		
	14. Сборка конструкции «Датчик перемещения	2	
\vdash		1	1

«Дракон». Конструирование модели. Измерения,		
расчеты, программирование модели. Решение задач.		
15. Сборка конструкции «Датчик наклона «Дракон».		
Конструирование модели. Измерения, расчеты,	2	
программирование модели. Решение задач.		
16. Сборка моделей по замыслу с использованием		
датчиков перемещения и наклона. Создание новых	2	
программ для выбранных моделей.		
17. Сборка конструкции «Цветок-мухоловка».		
Конструирование модели. Измерения, расчеты,	2	
программирование модели. Решение задач.		
18. Сборка конструкции «Датчик перемещения		
«Цветок-мухоловка». Конструирование модели.		
Измерения, расчеты, программирование модели.	2	
Решение задач.		
19. Сборка конструкции «Датчик наклона «Цветок-		
мухоловка». Конструирование модели. Измерения,	2	
расчеты, программирование модели. Решение задача.		
20. Практическая работ. Решение задач.	2	
21. Сборка конструкции «Лев». Конструирование		
модели. Измерения, расчеты, программирование	2	
модели. Решение задач.		
22. Сборка конструкции «Датчик перемещения «Лев».		
Конструирование модели. Измерения, расчеты,	2	
программирование модели. Решение задач.		
23. Сборка конструкции «Датчик наклона «Лев».		
Конструирование модели. Измерения, расчеты,	2	
программирование модели. Решение задача.		
24. Практическая работ. Решение задач.	2	
25. Сборка конструкций, изученных ранее (по выбору	2	
обучающихся). Соревнование команд. Создание		

	новых программ для выбранных моделей.		
	26. Соревнование команд. Создание новых программ для выбранных моделей.	2	
7.	Итоговая аттестация	2	защита проектов
	Итого	144	

Содержание учебно-тематического плана

Раздел 1. Вводное занятие. (2 часа)

Теория: Инструктаж по технике безопасности. Задачи кружка на новый учебный год. Обсуждение программ и планов. Организационные вопросы. Режим работы группы.

Раздел 2. **Обзор набора Lego WeDo 2.0** (2 часа)

Теория: Повторение и закрепление знаний о компонентах конструктора Lego WeDo 2.0.

Практика: Конструирование по замыслу.

Раздел 3. Программное обеспечение Lego WeDo 2.0 (4 часа)

Теория: Повторение и закрепление знаний о среде программирования (блоки, палитра, пиктограммы, связь блоков программы с конструктором).

Практика: Конструирование по замыслу. Составление программ.

Раздел 4. Работа над проектом «Механические конструкции» (50 часа)

Теория: Измерения, расчеты, программирование модели. Решение задач.

Практика: Сборка конструкций: «Подъемный кран», «Датчик перемещения «Подъемный кран», «Датчик наклона «Подъемный кран»; «Мельница», «Датчик перемещения «Мельница», «Датчик наклона «Мельница»; «Качели», «Датчик перемещения «Качели», «Датчик наклона «Качели»; «Веселая карусель», «Датчик перемещения «Веселая карусель», «Датчик наклона «Веселая карусель»; «Аттракцион «Колесо обозрения», «Датчик перемещения «Аттракцион «Колесо обозрения»; «Механический молоток», «Датчик перемещения, датчик наклона «Механический молоток»; «Радар», «Датчик перемещения и наклона «Радар».

Сборка моделей по замыслу с использованием датчиков перемещения и наклона. Создание новых программ для выбранных моделей. Конструирование модели по схеме. Измерения, расчеты, программирование модели. Решение задач.

Раздел 5. Работа над проектом «Транспорт» (32 часа)

Теория: Измерения, расчеты, программирование модели. Решение задач.

Практика: Сборка конструкций: «Подметально-уборочная машина», «Датчик перемещения «Подметально-уборочная машина», «Датчик наклона «Подметально-уборочная машина»; «Снегоочиститель», «Датчик перемещения «Снегоочиститель», «Датчик наклона «Снегоочиститель»; «Катер», «Датчик перемещения «Катер», «Датчик наклона «Катер»; «Самолет», «Датчик перемещения «Самолет», «Датчик наклона «Самолет». Конструирование модели. Соревнование команд. Создание моделей и написание новых программ для них.

Раздел 6. Работа над проектом «Мир живой природы» (52 часа)

Теория: Измерения, расчеты, программирование модели. Решение задач.

Практика: Сборка конструкций: «Пеликан», «Датчик перемещения «Пеликан», «Датчик наклона «Пеликан»; «Собака», «Датчик перемещения «Собака», «Датчик наклона «Собака»; «Лягушка», «Датчик перемещения «Лягушка», «Датчик

наклона «Лягушка»; «Дракон», «Датчик перемещения «Дракон», «Датчик наклона «Дракон»; «Цветок-мухоловка», «Датчик перемещения «Цветок-мухоловка», «Датчик наклона «Цветок-мухоловка»; «Лев», «Датчик перемещения «Лев», «Датчик наклона «Лев».

Конструирование модели. Сборка моделей по замыслу с использованием датчиков перемещения и наклона. Создание новых программ для выбранных моделей. Практическая работ. Решение задач. Соревнование команд.

Раздел 7. Итоговая работа. (2 часа)

Теория: Программирование. Презентация.

Практика: Конструирование модели по замыслу.

КОМПЛЕКС ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИХ УСЛОВИЙ

Материально-техническое обеспечение:

Для полноценной реализации программы необходимо:

- создать условия для разработки проектов;
- обеспечить удобным местом для индивидуальной и групповой работы;
- обеспечить обучающихся аппаратными и программными средствами.

Учебная аудитория для проведения лекционных и практических занятий оснащенная мебелью.

Аппаратные средства:

- Компьютер; основная конфигурация современного компьютера обеспечивает обучаемому мультимедиа-возможности: видеоизображение и звук.
- Устройства для ручного ввода текстовой информации и манипулирования экранными объектами клавиатура и мышь.
- Устройства для презентации: проектор, экран.
- Локальная сеть для обмена данными.
- Выход в глобальную сеть Интернет.

Программные средства:

- Операционная система.
- Файловый менеджер (в составе операционной системы или др.).
- Интегрированное офисное приложение, включающее текстовый редактор, растровый и векторный графические редакторы, электронные таблицы и средства разработки презентаций.
- Программное обеспечение Lego Education WEDO 2.0.

Дидактическое обеспечение:

- Лего-конструкторы.
- Программное обеспечение «Роболаб».
- Персональный компьютер.

Информационное обеспечение:

- профессиональная и дополнительная литература для педагога, учащихся, родителей;
- наличие аудио-, видео-, фотоматериалов, интернет источников, плакатов, чертежей, технических рисунков.

№ п/п	Наименование оборудования	Количество
1.	Интерактивная доска	1
2.	Ноутбук (для педагога)	1
3.	Ноутбук для воспитанника (пронумерованный)	10
4.	Проектор	1
5.	Базовый набор Lego WeDo 2.0 (пронумерованный)	10

6.	Мотор	10
7.	Датчик движения WeDo 2.0	10
8.	Датчик расстояния WeDo 2.0	10
9.	USB Lego – коммутатор (хаббл)	10

Кадровое обеспечение. В реализации программы заняты педагоги высшей педагогической квалификации, многократные победители и участники профессиональных конкурсов технической направленности разного уровня. Успешную реализацию программы обеспечивает педагог дополнительного образования, обладающий не только профессиональными знаниями, но и компетенциями в организации и ведении образовательной деятельности творческого объединения технической направленности.

Список литература:

- 1. «Базовый набор Перворобот» Книга для учителя. Перевод на русский язык Института новых технологий образования, М., 1999 г.
- 2. «Введение в Робототехнику», справочное пособие к программному обеспечению ПервороботNXT, ИНТ, 2007г.
- 3. «Государственные программы по трудовому обучению 1992-2000 гг.» Москва.: «Просвещение».
- 4. Безбородова Т.В. «Первые шаги в геометрии», М.: «Просвещение», 2009.

- 5. Волкова С.И. «Конструирование», М: «Просвещение», 2009.
- 6. Давидчук А.Н. «Развитие у дошкольников конструктивного творчества» Москва «Просвещение» 1976
- 7. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group.
- 8. Индустрия развлечений. ПервоРобот. Книга для учителя и сборник проектов. LEGO Group, перевод ИНТ, 87 с., ил.
- 9. Книги для учителя по работе с конструктором «Перворобот LEGO WeDo»
- 10.Козлова В.А. Робототехника в образовании [электронный pecypc]//http://lego.rkc-74.ru/index.php/2009-04-03-08-35-17, Пермь, 2011 г.
- 11. Комарова Л.Г. «Строим из LEGO» «ЛИНКА-ПРЕСС» Москва 2001
- 12. Кружок робототехники, [электронный pecypc]//http://lego.rkc-74.ru/index.php/-lego-
- 13.ЛЕГО-лаборатория (Control Lab). Эксперименты с моделью вентилятора: Учебнометодическое пособие, М., ИНТ, 1998. 46 с.
- 14. Литвиненко В.М., Аксёнов М.В. ЛЕГО МАСТЕР. Санкт-Петербург..: «Издательство «Кристалл»». 1999г.
- 15. Лусс Т.В. «Формирование навыков конструктивно-игровой деятельности у учащихся с помощью LEGO». Гуманитарный издательский центр ВЛАДОС Москва 2003
- 16.Мир вокруг нас: Книга проектов: Учебное пособие.- Пересказ с англ.-М.: Инт, 1998. 1. ЛЕГО-лаборатория (Control Lab):Справочное пособие, М., ИНТ, 1998. -150 стр.
- 17. Наука. Энциклопедия. М., «РОСМЭН», 2001г.
- 18. Сборник «Нормативно-правовая база дополнительного образования детей». Москва: Издательский дом «Школьная книга», 2006г.
- 19. Сборник материалов международной конференции «Педагогический процесс, как непрерывное развитие творческого потенциала личности» Москва.: МГИУ, 1998г.
- 20. Смирнов Н.К. «Здоровьесберегающие образовательные технологии в работе учителя и школы». Москва.: «Издательство Аркти», 2003г.
- 21. Справочное пособие к программному обеспечению Robolab. Москва.: ИНТ.

- 22. Сухомлинсий В.А. Воспитание коллектива. М.: Просвещение, 1989.
- 23. Трактуев О., Трактуева С., Кузнецов В. «ПЕРВОРОБОТ. Методическое учебное пособие для учителя». Москва.: ИНТ.
- 24. Энциклопедический словарь юного техника. М., «Педагогика»